
biohack academy waag society

BioHack Academy Principles of Electronics

A circuit

A circuit is a CLOSED LOOP in which electrons can flow.

Electrons flow $=$ Current

How can I generate a Current?
By connecting two electrodes of a battery

For example: Battery + Resistor

0 Battery

The battery is the power supply of our circuit.
It has two sides:

- + a.k.a. Plus, VCC, V+ or +V
- - a.k.a. Minus or GND

Unit of measure is Volt (V).

> Voltage:
> It's the difference in potential between two points

©
 Batteries \& Power Supplies

1.5 V

From the grid (220V) to 12 V (the output that be different), $\mathrm{VCC}=12 \mathrm{~V}$.

Resistor

It has two sides
The orientation is irrelevant
Unit of measure is Ohm (Ω)

(H) A basic circuit

- Voltage: is the difference in potential between two points
- Current: is the rate at which charge is flowing
- Resistance: is a material's tendency to resist the flow of electrons / current
(4) A basic circuit

(A) Electricity vs Waterfall

©
 Ohm's Law

(4) Using Ohm's Law

Ohm's Law

$$
\begin{aligned}
& \Delta V=(V+)-(V-)=R^{*} I \\
& V=R I \\
& I=V / R \\
& R=V / I
\end{aligned}
$$

```
Ex 1: Calculate the Current
\(\mathrm{V}=9 \mathrm{~V}\)
\(\mathrm{R} 1=1 \mathrm{k} \Omega=1000 \Omega\)
\(\mathrm{I}=\mathrm{V} / \mathrm{R}=(\mathrm{VCC}-\mathrm{GND}) / \mathrm{I}=(9 \mathrm{~V}-0 \mathrm{~V}) / 1 \mathrm{k} \Omega=9 \mathrm{~mA}=0.009 \mathrm{~A}\)
Ex 2: Calculate Resistance
\(\mathrm{V}=3 \mathrm{~V}\)
\(\mathrm{I}=20 \mathrm{~mA}\)
\(\mathrm{R}=\mathrm{V} / \mathrm{R}=3 \mathrm{~V} / 20 \mathrm{~mA}=150 \Omega\)
```


©
 Measuring

(N) Breadboard

-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

 -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

waag society

institute for art, science and technology

Soldering

(A) Soldering Iron - 350 C

(A) Soldering is easy

Bad join

Bad join

waag society

institute for art, science and technology

Electrical Safety

(4) Remember what your parents told you

220

VOLTS

(4) Dangers:

- High voltage
- Low resistance
- High Current
- Make use of isolation!
- Better safe than sorry!

